Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 69
Filtrar
1.
ACS Appl Mater Interfaces ; 16(15): 19507-19518, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38569131

RESUMO

The Stöber method, a widely utilized sol-gel technique, stands as a green and reliable approach for preparing nanostructures on a large scale. In this study, we employed an enhanced Stöber method to synthesize organopolysilazane nanoparticles (OPSZ NPs), utilizing polysilazane oligomers as the primary precursor material and ammonia as the catalytic agent. By implementing a two-step addition process, control over crucial parameters facilitated the regulation of the nanoparticle size. Generally, maintaining relatively low concentrations of organopolysilazane and catalyst while adjusting the water/acetonitrile ratio can effectively enhance the surface energy of the organopolysilazane, resulting in the uniform formation of small spherical particles. The average particle size of the synthesized OPSZ NPs is about 140 nm, which were monodispersed and characterized by scanning electron microscopy, transmission electron microscopy, and dynamic light scattering. Furthermore, the composition of OPSZ NPs after pyrolysis was confirmed as SiC2.054N0.206O1.631 with 5.44 wt % free carbon structure by X-ray diffraction and energy-dispersive X-ray spectroscopy. Notably, the electrochemical performance assessment of SiCNO NPs as potential electrode materials for lithium-ion batteries exhibited promising outcomes. Specifically, at 1 A g-1 current density, the specific capacity is 585.45 mA h g-1 after 400 cycles, and the minimum capacity attenuation per cycle is only 0.1076 mA h g-1 (0.0172% of the original capacity), which indicates excellent energy storage capacity and cycle stability. In summary, this research contributes to the development of advanced anode materials for next-generation energy storage systems, marking a stride toward sustainable energy solutions.

3.
J Transl Med ; 22(1): 144, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38336780

RESUMO

BACKGROUND: Neoantigens have emerged as a promising area of focus in tumor immunotherapy, with several established strategies aiming to enhance their identification. Human leukocyte antigen class I molecules (HLA-I), which present intracellular immunopeptides to T cells, provide an ideal source for identifying neoantigens. However, solely relying on a mutation database generated through commonly used whole exome sequencing (WES) for the identification of HLA-I immunopeptides, may result in potential neoantigens being missed due to limitations in sequencing depth and sample quality. METHOD: In this study, we constructed and evaluated an extended database for neoantigen identification, based on COSMIC mutation database. This study utilized mass spectrometry-based proteogenomic profiling to identify the HLA-I immunopeptidome enriched from HepG2 cell. HepG2 WES-based and the COSMIC-based mutation database were generated and utilized to identify HepG2-specific mutant immunopeptides. RESULT: The results demonstrated that COSMIC-based database identified 5 immunopeptides compared to only 1 mutant peptide identified by HepG2 WES-based database, indicating its effectiveness in identifying mutant immunopeptides. Furthermore, HLA-I affinity of the mutant immunopeptides was evaluated through NetMHCpan and peptide-docking modeling to validate their binding to HLA-I molecules, demonstrating the potential of mutant peptides identified by the COSMIC-based database as neoantigens. CONCLUSION: Utilizing the COSMIC-based mutation database is a more efficient strategy for identifying mutant peptides from HLA-I immunopeptidome without significantly increasing the false positive rate. HepG2 specific WES-based database may exclude certain mutant peptides due to WES sequencing depth or sample heterogeneity. The COSMIC-based database can effectively uncover potential neoantigens within the HLA-I immunopeptidomes.


Assuntos
Antígenos de Neoplasias , Bases de Dados Genéticas , Antígenos de Histocompatibilidade Classe I , Linfócitos T , Humanos , Antígenos de Neoplasias/metabolismo , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Mutação/genética , Peptídeos/química
5.
ACS Appl Mater Interfaces ; 16(2): 2802-2813, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38181409

RESUMO

Due to the multiple different properties in self-healing elastomers that are mutually exclusive based on the different and contradictory molecule chain structures, simultaneously achieving the ultrahigh mechanical performance and high durability of self-healing elastomers is a great challenge and the goal that has always been pursued. Herein, we report a novel strategy to fabricate a self-healing elastomer by introducing interlaced hydrogen bonds with superhigh binding energy. Distinguishing from the quadruple hydrogen bonds reported already, the interlaced hydrogen bond with a lower repulsive secondary interaction and higher binding energy is composed of two molecule units with different lengths and steric hindrance. Connected by the interlaced hydrogen bonds, a supramolecule interlocking network is formed to lock the polymer chains at room temperature, endowing the poly(urethane-urea) elastomer with an unprecedented ultrahigh strength (117.5 MPa, even higher than some plastics), the superhigh fracture energy (522.46 kJ m-2), and an excellent puncture resistance (puncture force reached 181.9 N). Moreover, the elastomers also exhibited excellent self-healing properties (healing efficiency up to 95.8%), high transparency (the average transmittance up to 91.0%), and good durability (including thermal decomposition resistance, thermal oxidation aging resistance, water resistance, and solvent resistance), providing a theoretical basis and technical reference in the development and broadening the application prospects of self-healing elastomers.

6.
Adv Sci (Weinh) ; 11(4): e2305442, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38009491

RESUMO

Neuroinflammation is associated with poor outcomes in patients with spinal cord injury (SCI). Recent studies have demonstrated that stimulator of interferon genes (Sting) plays a key role in inflammatory diseases. However, the role of Sting in SCI remains unclear. In the present study, it is found that increased Sting expression is mainly derived from activated microglia after SCI. Interestingly, knockout of Sting in microglia can improve the recovery of neurological function after SCI. Microglial Sting knockout restrains the polarization of microglia toward the M1 phenotype and alleviates neuronal death. Furthermore, it is found that the downregulation of mitofusin 2 (Mfn2) expression in microglial cells leads to an imbalance in mitochondrial fusion and division, inducing the release of mitochondrial DNA (mtDNA), which mediates the activation of the cGas-Sting signaling pathway and aggravates inflammatory response damage after SCI. A biomimetic microglial nanoparticle strategy to deliver MASM7 (named MSNs-MASM7@MI) is established. In vitro, MSNs-MASM7@MI showed no biological toxicity and effectively delivered MASM7. In vivo, MSNs-MASM7@MI improves nerve function after SCI. The study provides evidence that cGas-Sting signaling senses Mfn2-dependent mtDNA release and that its activation may play a key role in SCI. These findings provide new perspectives and potential therapeutic targets for SCI treatment.


Assuntos
Microglia , Traumatismos da Medula Espinal , Humanos , Microglia/metabolismo , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Regulação para Baixo , Inflamação/metabolismo , Traumatismos da Medula Espinal/metabolismo , Nucleotidiltransferases/metabolismo
7.
J Nat Med ; 78(1): 33-41, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37658159

RESUMO

Six new naphthoquinones, euchronin A-F (1-6) and nine known naphthoquinones (7-15), were isolated from the roots of Arnebia euchroma (Royle) Johnst. The structures of the new compounds were confirmed by extensive spectroscopic analyses, including UV, IR, HR-ESI-MS, 1D and 2D NMR. In the present study, we estimated the anti-proliferative activities of these compounds with HaCaT cells. The results indicated that compounds 2 and 4 showed strong anti-proliferative activities at 25 µM, with relative viability at 38.83% and 68.44%, respectively.


Assuntos
Boraginaceae , Naftoquinonas , Naftoquinonas/farmacologia , Naftoquinonas/química , Extratos Vegetais/farmacologia , Extratos Vegetais/análise , Boraginaceae/química
8.
Phys Chem Chem Phys ; 25(46): 32051-32061, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37982198

RESUMO

The reaction pathways and potential energy profiles are theoretically explored for H-abstraction, addition and addition-dissociation reactions of methyl formate (MF, HC(O)OCH3) + NO2 using the high level quantum chemical compound method CCSD(T)/cc-pVxZ(x = T, Q)//M062X/6-311+G(2df,2p). Notably, three different HNO2 isomers (cis-HONO, trans-HONO and HNO2) are all considered in each reaction pathway. The corresponding temperature- and pressure-dependent rate constants are then computed by RRKM/ME simulations with one-dimensional hindered rotor approximation and asymmetric Eckart tunneling corrections. The calculations show that the rate constants are pressure independent. Although trans-HONO is the most stable HNO2 isomer, the results reveal that the dominant channels are cis-HONO + HC(O)OCH2/C(O)OCH3 and cis-HC(O)(ONO)OCH3 for the H-abstraction and addition, respectively. Moreover, the lowest energy barrier for the H-abstraction channel (cis-abs) is 11.2 kcal mol-1 lower than the addition channel (cis-add), and thus the addition channel is less kinetically favored. The computed rate constants for the MF + NO2 reaction are then incorporated into a kinetic model and the importance of the title reaction in predicting the ignition behavior of MF/NO2 mixtures is demonstrated by kinetic modeling. The detailed reaction kinetics in this work will be helpful for kinetic model development of other ester-based fuels.

9.
Chemosphere ; 344: 140329, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37783352

RESUMO

Next-generation risk assessment (NGRA) for environmental chemicals involves a weight of evidence (WoE) framework integrating a suite of new approach methodologies (NAMs) based on points of departure (PoD) obtained from in vitro assays. Among existing NAMs, the omic-based technologies are of particular importance based on the premise that any apical endpoint change indicative of impaired health must be underpinned by some alterations at the omics level, such as transcriptome, proteome, metabolome, epigenome and genome. Transcriptomic assay plays a leading role in providing relatively conservative PoDs compared with apical endpoints. However, it is unclear whether and how parameters measured with other omics techniques predict the cellular response to chemical perturbations, especially at exposure levels below the transcriptomically defined PoD. Multi-omics coverage may provide additional sensitive or confirmative biomarkers to complement and reduce the uncertainty in safety decisions made using targeted and transcriptomics assays. In the present study, we conducted multi-omics studies of transcriptomics, proteomics and phosphoproteomics on two prototype compounds, coumarin and 2,4-dichlorophenoxyacetic acid (2,4-D), with multiple chemical concentrations and time points, to understand the sensitivity of the three omics techniques in response to chemically-induced changes in HepG2. We demonstrated that, phosphoproteomics alterations occur not only earlier in time, but also more sensitive to lower concentrations than proteomics and transcriptomics when the HepG2 cells were exposed to various chemical treatments. The phosphoproteomics changes appear to approach maximum when the transcriptomics alterations begin to initiate. Therefore, it is proximal to the very early effects induced by chemical exposure. We concluded that phosphoproteomics can be utilized to provide a more complete coverage of chemical-induced cellular alteration and supplement transcriptomics-based health safety decision making.


Assuntos
Socorristas , Proteômica , Humanos , Proteômica/métodos , Transcriptoma , Proteoma , Perfilação da Expressão Gênica
10.
Clin Ther ; 45(10): 991-1003, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37690913

RESUMO

PURPOSE: Viral myocarditis (VMC) is a life-threatening disease that can affect all ages and genders, with middle-aged adults being particularly susceptible. Numerous systematic reviews have been conducted to investigate the efficacy and safety of Chinese herbal medicine (CHM) in treating adult viral myocarditis (AVM). The objective of this study was to conduct a comprehensive overview of systematic reviews and meta-analyses of randomized controlled trials (RCTs) regarding the efficacy and safety of CHM for AVM. METHODS: A comprehensive systematic search was conducted across 8 electronic databases from their inception to June 23, 2022, augmented by manual searches of the gray literature. Systematic reviews were independently selected and data extracted in accordance with predetermined criteria by 2 reviewers. Included systematic reviews were assessed for methodologic and reporting quality using Assessing the Methodological Quality of Systematic Reviews 2 and Preferred Reporting Items for Systematic Reviews and Meta-Analyses. The quality of evidence relating to outcome measures was evaluated using the Grading of Recommendations, Assessment, Development, and Evaluation tool. Recalculation of effect sizes and subsequent determination of 95% CIs were conducted with either a fixed-effects or random-effects model. FINDINGS: The current overview of systematic reviews included a total of 6 systematic reviews, which reported on 67 RCTs with a participant pool of 5611 individuals. The findings of our study indicate that the combination of CHM and Western medications had positive effects on the effective rate, cure rate, ECG recovery, atrial premature contraction/premature ventricular contraction, left ventricular ejection fraction, myocardial enzymes, and improvement of clinical symptoms for AVM. The adverse drug reactions in the combination therapy group were generally less than or lighter than that in the Western medication group (relative risk = 0.79; 95% CI, 0.44-1.40; P > 0.05, I2 = 0). IMPLICATIONS: Our research results provide evidence that combining CHM with Western medicine could offer potential benefits for patients with AVM. However, the number of studies included in our review is limited and the methodologic quality of these studies is modest. Therefore, there are potential uncertainties regarding the conclusion that CHM with Western medication may benefit patients with AVM. We call for more large-scale, high-quality studies with standardized designs to further verify and support our findings. This would promote a better understanding of the efficacy and safety profile of CHM and provide reliable reference evidence for clinical practice and policy making. Moreover, future research should explore optimal drug combinations, examine therapeutic doses and durations of CHM combination therapy, and evaluate its long-term efficacy and safety.


Assuntos
Medicamentos de Ervas Chinesas , Miocardite , Adulto , Humanos , Pessoa de Meia-Idade , Combinação de Medicamentos , Medicamentos de Ervas Chinesas/efeitos adversos , Miocardite/tratamento farmacológico , Miocardite/induzido quimicamente , Ensaios Clínicos Controlados Aleatórios como Assunto , Revisões Sistemáticas como Assunto , Metanálise como Assunto
11.
ACS Appl Mater Interfaces ; 15(36): 43048-43059, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37647234

RESUMO

High performance has always been the research focus of elastomers. However, there are inherent conflicts among properties of elastomers, such as strength and toughness, strength and damping performance, strength and self-healing ability, etc. Herein, first, we synthesized a unique structure of the dangling chain containing proton donors and receptors. Then, we design and fabricate a kind of high-performance elastomer with a gradient distribution of a dangling chain and a dynamic bond structure. The dangling chains of different lengths intertwine with each other and self-assemble to form a "dense accumulation" structure driven by hydrogen bonds, and the elastomer exhibits special micro/nano scale aggregated states and microphase separation. The "dense accumulation" structure plays a vital role in the increase of mechanical properties. Meanwhile, under the joint action of a dangling chain and a dynamic bond, the damping performance and self-healing performance of the elastomer are greatly enhanced. High strength (27.5 MPa), toughness (121.9 MJ·m-3), 94.8% healing efficiency and outstanding damping performance (tan δ ≥ 0.4, high damping temperature range up to 144 °C) are simultaneously achieved beyond the current state-of-the-art. This topoarchitected polymer with a gradient distribution of dangling chains successfully solves the defects of conventional branched polymers in deteriorating their mechanical properties. This material design provides a new strategy for the development of high-performance structural and functional integrated elastomers.

12.
J Hazard Mater ; 459: 132211, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37572605

RESUMO

Soman, a warfare nerve agent, poses a significant threat by inducing severe brain damage that often results in death. Nonetheless, our understanding of the biological changes underlying persistent neurocognitive dysfunction caused by low dosage of soman remains limited. This study used mice to examine the effects of different doses of soman over time. Phosphoproteomic analysis of the mouse brain is the first time to be used to detect toxic effects of soman at such low or ultra-low doses, which were undetectable based on measuring the activity of acetylcholinesterase at the whole-animal level. We also found that phosphoproteome alterations could accurately track the soman dose, irrespective of the sampling time. Moreover, phosphoproteome revealed a rapid and adaptive cellular response to soman exposure, with the points of departure 8-38 times lower than that of acetylcholinesterase activity. Impaired long-term potentiation was identified in phosphoproteomic studies, which was further validated by targeted quantitative proteomics, immunohistochemistry, and immunofluorescence analyses, with significantly increased levels of phosphorylation of protein phosphatase 1 in the hippocampus following soman exposure. This increase in phosphorylation inhibits long-term potentiation, ultimately leading to long-term memory dysfunction in mice.


Assuntos
Agentes Neurotóxicos , Soman , Camundongos , Animais , Soman/toxicidade , Acetilcolinesterase/metabolismo , Potenciação de Longa Duração , Hipocampo , Inibidores da Colinesterase
13.
Front Immunol ; 14: 1164669, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37545521

RESUMO

Background: Despite encouraging results from immunotherapy combined with targeted therapy for hepatocellular carcinoma (HCC), the prognosis remains poor. Chemokines and their receptors are an essential component in the development of HCC, but their significance in HCC have not yet been fully elucidated. We aimed to establish chemokine-related prognostic signature and investigate the association between the genes and tumor immune microenvironment (TIME). Methods: 342 HCC patients have screened from the TCGA cohort. A prognostic signature was developed using least absolute shrinkage and selection operator regression and Cox proportional risk regression analysis. External validation was performed using the LIHC-JP cohort deployed from the ICGC database. Single-cell RNA sequencing (scRNA-seq) data from the GEO database. Two nomograms were developed to estimate the outcome of HCC patients. RT-qPCR was used to validate the differences in the expression of genes contained in the signature. Results: The prognostic signature containing two chemokines-(CCL14, CCL20) and one chemokine receptor-(CCR3) was successfully established. The HCC patients were stratified into high- and low-risk groups according to their median risk scores. We found that patients in the low-risk group had better outcomes than those in the high-risk group. The results of univariate and multivariate Cox regression analyses suggested that this prognostic signature could be considered an independent risk factor for the outcome of HCC patients. We discovered significant differences in the infiltration of various immune cell subtypes, tumor mutation burden, biological pathways, the expression of immune activation or suppression genes, and the sensitivity of different groups to chemotherapy agents and small molecule-targeted drugs in the high- and low-risk groups. Subsequently, single-cell analysis results showed that the higher expression of CCL20 was associated with HCC metastasis. The RT-qPCR results demonstrated remarkable discrepancies in the expression of CCL14, CCL20, and CCR3 between HCC and its paired adjacent non-tumor tissues. Conclusion: In this study, a novel prognostic biomarker explored in depth the association between the prognostic model and TIME was developed and verified. These results may be applied in the future to improve the efficacy of immunotherapy or targeted therapy for HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/genética , Quimiocinas CC , Imunoterapia , Fatores de Risco , Microambiente Tumoral/genética
14.
Front Cardiovasc Med ; 10: 1064949, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37416923

RESUMO

Single-cell RNA sequencing (scRNA-seq) is a new technology that can be used to explore molecular changes in complex cell clusters at the single-cell level. Single-cell spatial transcriptomic technology complements the cell-space location information lost during single-cell sequencing. Coronary artery disease is an important cardiovascular disease with high mortality rates. Many studies have explored the physiological development and pathological changes in coronary arteries from the perspective of single cells using single-cell spatial transcriptomic technology. This article reviews the molecular mechanisms underlying coronary artery development and diseases as revealed by scRNA-seq combined with spatial transcriptomic technology. Based on these mechanisms, we discuss the possible new treatments for coronary diseases.

15.
Biochim Biophys Acta Gene Regul Mech ; 1866(3): 194953, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37307946

RESUMO

Fungal infections and antifungal resistance are the increasing global public health concerns. Mechanisms of fungal resistance include alterations in drug-target interactions, detoxification by high expression of drug efflux transporters, and permeability barriers associated with biofilms. However, the systematic panorama and dynamic changes of the relevant biological processes of fungal drug resistance acquisition remain limited. In this study, we developed a yeast model of resistance to prolonged fluconazole treatment and utilized the isobaric labels TMT (tandem mass tag)-based quantitative proteomics to analyze the proteome composition and changes in native, short-time fluconazole stimulated and drug-resistant strains. The proteome exhibited significant dynamic range at the beginning of treatment but returned to normal condition upon acquisition drug resistance. The sterol pathway responded strongly under a short time of fluconazole treatment, with increased transcript levels of most enzymes facilitating greater protein expression. With the drug resistance acquisition, the sterol pathway returned to normal state, while the expression of efflux pump proteins increased obviously on the transcription level. Finally, multiple efflux pump proteins showed high expression in drug-resistant strain. Thus, families of sterol pathway and efflux pump proteins, which are closely associated with drug resistance mechanisms, may play different roles at different nodes in the process of drug resistance acquisition. Our findings uncover the relatively important role of efflux pump proteins in the acquisition of fluconazole resistance and highlight its potential as the vital antifungal targets.


Assuntos
Antifúngicos , Fluconazol , Fluconazol/farmacologia , Fluconazol/metabolismo , Antifúngicos/farmacologia , Antifúngicos/metabolismo , Proteoma/metabolismo , Proteômica , Candida albicans/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Esteróis/metabolismo , Ergosterol/metabolismo
16.
Gastroenterology ; 165(3): 746-761.e16, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37263311

RESUMO

BACKGROUND & AIMS: Liver fibrosis is an intrinsic wound-healing response to chronic injury and the major cause of liver-related morbidity and mortality worldwide. However, no effective diagnostic or therapeutic strategies are available, owing to its poorly characterized molecular etiology. We aimed to elucidate the mechanisms underlying liver fibrogenesis. METHODS: We performed a quantitative proteomic analysis of clinical fibrotic liver samples to identify dysregulated proteins. Further analyses were performed on the sera of 164 patients with liver fibrosis. Two fibrosis mouse models and several biochemical experiments were used to elucidate liver fibrogenesis. RESULTS: We identified cathepsin S (CTSS) up-regulation as a central node for extracellular matrix remodeling in the human fibrotic liver by proteomic screening. Increased serum CTSS levels efficiently predicted liver fibrosis, even at an early stage. Secreted CTSS cleaved collagen 18A1 at its C-terminus, releasing endostatin peptide, which directly bound to and activated hepatic stellate cells via integrin α5ß1 signaling, whereas genetic ablation of Ctss remarkably suppressed liver fibrogenesis via endostatin reduction in vivo. Further studies identified macrophages as the main source of hepatic CTSS, and splenectomy effectively attenuated macrophage infiltration and CTSS expression in the fibrotic liver. Pharmacologic inhibition of CTSS ameliorated liver fibrosis progression in the mouse models. CONCLUSIONS: CTSS functions as a novel profibrotic factor by remodeling extracellular matrix proteins and may represent a promising target for the diagnosis and treatment of liver fibrosis.


Assuntos
Endostatinas , Proteômica , Camundongos , Animais , Humanos , Endostatinas/metabolismo , Endostatinas/farmacologia , Fígado/metabolismo , Cirrose Hepática/metabolismo , Fibrose , Modelos Animais de Doenças , Células Estreladas do Fígado/metabolismo , Matriz Extracelular , Macrófagos/metabolismo
17.
Microb Genom ; 9(5)2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37133904

RESUMO

Symbiotic nitrogen fixation between legumes and rhizobia makes a great contribution to the terrestrial ecosystem. The successful symbiosis between the partners mainly depends on the nod and nif genes in rhizobia, while the specific symbiosis is mainly determined by the structure of Nod factors and the corresponding secretion systems (type III secretion system; T3SS), etc. These symbiosis genes are usually located on symbiotic plasmids or a chromosomal symbiotic island, both could be transferred interspecies. In our previous studies, Sesbania cannabina-nodulating rhizobia across the world were classified into 16 species of four genera and all the strains, especially those of Rhizobium spp., harboured extraordinarily highly conserved symbiosis genes, suggesting that horizontal transfer of symbiosis genes might have happened among them. In order to learn the genomic basis of diversification of rhizobia under the selection of host specificity, we performed this study to compare the complete genome sequences of four Rhizobium strains associated with S. cannabina, YTUBH007, YTUZZ027, YTUHZ044 and YTUHZ045. Their complete genomes were sequenced and assembled at the replicon level. Each strain represents a different species according to the average nucleotide identity (ANI) values calculated using the whole-genome sequences; furthermore, except for YTUBH007, which was classified as Rhizobium binae, the remaining three strains were identified as new candidate species. A single symbiotic plasmid sized 345-402 kb containing complete nod, nif, fix, T3SS and conjugal transfer genes was detected in each strain. The high ANI and amino acid identity (AAI) values, as well as the close phylogenetic relationships among the entire symbiotic plasmid sequences, indicate that they have the same origin and the entire plasmid has been transferred among different Rhizobium species. These results indicate that S. cannabina stringently selects a certain symbiosis gene background of the rhizobia for nodulation, which might have forced the symbiosis genes to transfer from some introduced rhizobia to the related native or local-condition-adapted bacteria. The existence of almost complete conjugal transfer related elements, but not the gene virD, indicated that the self-transfer of the symbiotic plasmid in these rhizobial strains may be realized via a virD-independent pathway or through another unidentified gene. This study provides insight for the better understanding of high-frequency symbiotic plasmid transfer, host-specific nodulation and the host shift for rhizobia.


Assuntos
Rhizobium , Sesbania , Sesbania/genética , Sesbania/microbiologia , Filogenia , Simbiose/genética , Ecossistema , Plasmídeos/genética , Rhizobium/genética
18.
Nat Commun ; 14(1): 1827, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005419

RESUMO

Several groups of bacteria have complex life cycles involving cellular differentiation and multicellular structures. For example, actinobacteria of the genus Streptomyces form multicellular vegetative hyphae, aerial hyphae, and spores. However, similar life cycles have not yet been described for archaea. Here, we show that several haloarchaea of the family Halobacteriaceae display a life cycle resembling that of Streptomyces bacteria. Strain YIM 93972 (isolated from a salt marsh) undergoes cellular differentiation into mycelia and spores. Other closely related strains are also able to form mycelia, and comparative genomic analyses point to gene signatures (apparent gain or loss of certain genes) that are shared by members of this clade within the Halobacteriaceae. Genomic, transcriptomic and proteomic analyses of non-differentiating mutants suggest that a Cdc48-family ATPase might be involved in cellular differentiation in strain YIM 93972. Additionally, a gene encoding a putative oligopeptide transporter from YIM 93972 can restore the ability to form hyphae in a Streptomyces coelicolor mutant that carries a deletion in a homologous gene cluster (bldKA-bldKE), suggesting functional equivalence. We propose strain YIM 93972 as representative of a new species in a new genus within the family Halobacteriaceae, for which the name Actinoarchaeum halophilum gen. nov., sp. nov. is herewith proposed. Our demonstration of a complex life cycle in a group of haloarchaea adds a new dimension to our understanding of the biological diversity and environmental adaptation of archaea.


Assuntos
Halobacteriaceae , Streptomyces , Hifas/genética , Proteômica , Filogenia , RNA Ribossômico 16S/genética , Streptomyces/genética , Halobacteriaceae/genética , Esporos , Diferenciação Celular , Análise de Sequência de DNA , China
19.
Chemosphere ; 313: 137359, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427571

RESUMO

Omic-based technologies are of particular interest and importance for hazard identification and health risk characterization of chemicals. Their application in the new approach methodologies (NAMs) anchored on cellular toxicity pathways is based on the premise that any apical health endpoint change must be underpinned by some alterations at the omic levels. In the present study we examined the cellular responses to two chemicals, caffeine and coumarin, by generating and integrating multi-omic data from multi-dose and multi-time point transcriptomic, proteomic and phosphoproteomic experiments. We showed that the methodology presented here was able to capture the complete chain of events from the first chemical-induced changes at the phosphoproteome level, to changes in gene expression, and lastly to changes in protein abundance, each with vastly different points of departure (PODs). In HepG2 cells we found that the metabolism of lipids and general cellular stress response to be the dominant biological processes in response to caffeine and coumarin exposure, respectively. The phosphoproteomic changes were detected early in time, at very low doses and provided a fast, adaptive cellular response to chemical exposure with 7-37-fold lower points of departure comparing to the transcriptomics. Changes in protein abundance were found much less frequently than transcriptomic changes. While challenges remain, our study provides strong and novel evidence supporting the notion that these three omic technologies can be used in an integrated manner to facilitate a more complete understanding of pathway perturbations and POD determinations for risk assessment of chemical exposures.


Assuntos
Segurança Química , Proteômica , Transcriptoma , Cafeína/toxicidade , Perfilação da Expressão Gênica/métodos , Medição de Risco
20.
Virulence ; 14(1): 2150453, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-36411420

RESUMO

Avian pathogenic Escherichia coli (APEC) leads to economic losses in poultry industry and is also a threat to human health. Various strategies were used for searching virulence factors, while little is known about the mechanism by which APEC survives in host or is eliminated by host. Thus, chicken colibacillosis model was constructed by intraperitoneally injecting E. coli O78 in this study, then the protein dynamic expression of spleen was characterized at different post-infection times by quantitative proteome. Comparative analysis showed that E. coli induced significant dysregulation at 72 h post infection in spleen tissue. Transcriptomic method was further used to assess the changes of dysregulated proteins at 72 h post infection at the mRNA level. Total 278 protein groups (5.7%) and 2,443 genes (24.4%) were dysregulated, respectively. The upregulated proteins and genes were consistently enriched in phagosome and lysosome pathways, indicating E. coli infection activates phagosome maturation pathway. The matured phagolysosome might kill the invasive E. coli. This study illuminated the genetic dysregulation in chicken spleen at the protein and mRNA levels after E. coli infecting and identified candidate genes for host response to APEC infection.


Assuntos
Infecções por Escherichia coli , Doenças das Aves Domésticas , Proteogenômica , Animais , Galinhas , Escherichia coli/metabolismo , Infecções por Escherichia coli/veterinária , Infecções por Escherichia coli/patologia , Fagossomos , Doenças das Aves Domésticas/microbiologia , Doenças das Aves Domésticas/patologia , Baço/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...